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Abstract

A new computational method for the transcendental eigensolution of structural dynamics is proposed. It is based on

a new criterion for detecting the eigenfrequency. Instead of trying to find the roots of the determinant of the dynamic

stiffness matrix, this method seeks the frequency that makes the last energy norm vanish, so matching the physical

definition of eigenfrequency except for those eigenfrequencies for which the last degree of freedom is nodal in the mode,

for which the method is suitably modified. By using the property of derivatives of energy norms, the eigenproblem is

transformed safely into a specific initial value problem of an ordinary differential equation. Among many available

methods to solve the resulting ordinary differential equation, the one-step Runge–Kutta method is proved to be a

simple and efficient way to obtain eigensolutions, as confirmed by a numerical example.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Transcendental eigenproblems arise in structural dynamics when the exact dynamic stiffness matrix, the

coefficients of which are transcendental functions of frequency, is used instead of the approximate one of

finite element (FEM) analysis, which gives a linear eigenproblem (Blaszkowiak and Kaczkowski, 1966;

Williams and Wittrick, 1970). Therefore they are very different from the usual linear eigenvalue problems,

because they possess an infinite number of eigensolutions even though the order of the dynamic stiffness

matrix is finite. Hence the higher natural frequencies are obtainable from the transcendental eigenproblem,

unlike the linear eigenproblem in which higher natural frequencies can be modelled with reasonable

accuracy only by accepting the large computational cost of making the size of elements small enough
(Hager and Wiberg, 1999; Wiberg et al., 1999).
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In contrast to the many well-established methods for solving linear eigenproblems (Bathe, 1996; Mei-

rovitch, 1980; Collar and Simpson, 1987), there are only a few published methods available for solving

transcendental eigenproblems. Based on the Sturm sequence property of eigenproblems, Wittrick and

Williams (1971) developed an algorithm which enables one to count the number of eigenfrequencies ex-
ceeded by a given trial frequency. Hence upper and lower bounds on any specified eigenfrequency are easily

determined. Moreover, the upper and lower bounds can always be made to approach each other by the

bisection method, i.e. by recursively selecting a trial value half way between the current upper and lower

bounds, which itself becomes the next upper or lower bound (Williams and Wittrick, 1970, 1983; Wittrick

and Williams, 1971, 1973; Williams and Anderson, 1986; Ye and Williams, 1995). This is regarded as a

reliable method for solving transcendental eigenproblems and was the first way in which the Wittrick–

Williams algorithm was applied.

Unfortunately, the computation of the modes of vibration does not benefit directly from the Wittrick–
Williams algorithm, in the sense that the algorithm can be used to bound an eigenvalue but does not give

bounds on the associated eigenvector, i.e. the mode. Thus when using the Wittrick–Williams algorithm the

commonest existing procedure is to converge on the eigenfrequency first and then to find the mode by, in

effect, inverting a matrix which is not usually very well-conditioned (Hopper and Williams, 1977; Howson,

1979; Howson et al., 1983; Ronagh et al., 1995; Williams and Yuan, 1999). As a result, the mode of

vibration is usually not very accurate, typically having two or three fewer significant figures of accuracy

than that to which the eigenvalue has been found.

Although the bisection method often employed when using the Wittrick–Williams algorithm shares the
reliability of the algorithm itself, it possesses only linear order convergence. Alternatives to bisection have

been developed to accelerate convergence when using the Wittrick–Williams algorithm (Simpson, 1984;

Williams and Kennedy, 1988; Kennedy and Williams, 1991) but further work is needed in this area.

In this paper, the foundation of the Wittrick–Williams algorithm is reviewed, with the emphasis put on

reducing the dynamic stiffness matrix to diagonal form by using a congruent transformation. The physical

meanings of the matrix of the congruent transformation and of the resulting diagonal matrix are fully

developed. For example, the last column of the congruent transformation matrix is the mode of dis-

placement when the forces acting at all the degrees of freedom except the last one are zero, while the force
acting at the last degree of freedom is equal to the last element of the diagonal matrix. This last element is

very important to the computation of eigensolutions and is called the last energy norm. Based on the

physical definitions of the eigenfrequency and its corresponding mode of vibration, it is easy to understand

that usually if the last energy norm tends to zero, then the last column of the congruent matrix tends to the

mode of vibration and also the trial frequency that makes this last energy norm vanish is an eigenfrequency

of the structure. Therefore, the mode of vibration can be found without inversion of any matrix at the

same time as the associated eigenfrequency is obtained. Using the qualitative properties of the last energy

norm, the differential of the trial frequency with respect to it is found and the transcendental eigenvalue
problem is transformed into an initial value problem of an ordinary differential equation. Consequently,

any advanced methods for solving ordinary differential equations can be used to solve the transcendental

eigenproblem.
2. Review of the Wittrick–Williams algorithm

A structure is usually discretized by using FEM in order to obtain the numerical solution of the problem
whenever analytical solution is impossible or inconvenient. In this FEM case, the eigenproblem can be

stated mathematically as being to find a positive real parameter k in the equation
ðK� kMÞx ¼ 0; ð1Þ
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which makes the vector x non-trivial, where K and M are the (n� n) static stiffness and mass matrices,

respectively, and both of these matrices are real, symmetric and non-negative definite. k is related to the

circular frequency x by k ¼ x2. It is well known that there is a non-singular matrix X whose ith column is

the eigenvector xi associated with the eigenvalue ki, such that, for any trial value �k,
XTðK� �kMÞX ¼ Diagðk1 � �k; . . . ; ki � �k; . . . ; kn � �kÞ: ð2Þ

If �k is not coincident with any of the eigenvalues, the dynamic stiffness matrix ðK� �kMÞ can be factorized

into
ðK� �kMÞ ¼ LU ¼ LDLT ð3Þ

by the process of Gauss elimination, where L is a non-singular lower triangular matrix with unit diagonal

elements, U is an upper triangular matrix, and D is a diagonal matrix. From Eq. (3), it can easily be seen

that
L�1ðK� �kMÞL�T ¼ D: ð4Þ

Based on Sylvester�s law of inertia (Mirsky, 1982), if D1 and D2 are real diagonal matrices obtained from

the same real symmetric matrix A by two congruent transformations, e.g. PT
1AP1 ¼ D1 and PT

2AP2 ¼ D2,

where P1 and P2 are real non-singular matrices, then D1 and D2 must have the same number of negative

diagonal elements. Therefore this number is invariant under the congruent transformation; it is called the

sign count of A and is denoted by sfAg. Now if the number of negative diagonal elements of the matrix on
the right-hand side of Eq. (2) is �Jð�kÞ, it is clearly the number of eigenvalues of the structure exceeded by �k.
Hence comparing Eqs. (2) and (4) gives
�Jð�kÞ ¼ sfK� �kMg: ð5Þ

The eigenvalues of Eq. (1) are only approximate eigenvalues of the structure because of the errors arising

from the discretization process. An obvious inconsistency of any discrete model is that it predicts only a

finite number of eigenfrequencies of the structure, whereas the real structure has an unlimited number.

Therefore if a high eigenfrequency is of interest, smaller elements have to be employed, which usually

results in the matrices K and M being much larger and hence in a greatly increased solution time.

Fortunately, there are always ways to reduce the number of governing equations. For instance, if x is
divided into two parts, namely xc, the visible vector of order m, and xi, the invisible vector of order ðn� mÞ,
Eq. (1) can be re-written as
ðKii � �kMiiÞ ðKic � �kMicÞ
ðKci � �kMciÞ ðKcc � �kMccÞ

� �
xi

xc

� �
¼ 0

0

� �
ð6Þ
and xi can be expressed in terms of xc as
xi ¼ �ðKii � �kMiiÞ�1ðKic � �kMicÞxc: ð7Þ

Now xc can be obtained by solving the equation
KDð�kÞxc ¼ 0; ð8Þ

where the reduced dynamic stiffness matrix KDð�kÞ is given by
KDð�kÞ ¼ ðKcc � �kMccÞ � ðKci � �kMciÞðKii � �kMiiÞ�1ðKic � �kMicÞ: ð9Þ
When the dynamic stiffness matrix is subjected to a congruent transformation for which
P ¼ In�m �ðKii � �kMiiÞ�1ðKic � �kMicÞ
0 Im

� �
; ð10Þ
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where Ik is the unit matrix of order k, it reduces to the following matrix with quasi-diagonal form
Fig. 1.

nodes,
PT ðKii � �kMiiÞ ðKic � �kMicÞ
ðKci � �kMciÞ ðKcc � �kMccÞ

� �
P ¼ ðKii � �kMiiÞ 0

0 KDð�kÞ

� �
: ð11Þ
It is obvious that each non-null sub-matrix on the right-hand side of Eq. (11) can be further reduced to a

diagonal matrix separately by a congruent transformation. Therefore, the sign count of the dynamic

stiffness matrix is the sum of the sign counts of these sub-matrices, i.e.
�Jð�kÞ ¼ sfKii � �kMiig þ sfKDð�kÞg: ð12Þ
Now, suppose that the whole structure is composed of sub-structures, so that the nodes of the structure

can be divided into two groups according to whether or not they are on the boundary of any sub-structure.

A node that belongs to such a boundary is called a sub-boundary node, and a node that is geometrically at

an inner point of a sub-structure is called an inner node. For example, for the structure shown in Fig. 1 the
nodes C1, C2, C3 and C4 are sub-boundary nodes, and the nodes denoted by hollow circles are inner nodes.

Note that in this simple example each sub-structure represents a single member, but that in general sub-

structures can consist of many members and such complicated sub-structures are included by the theory

presented in this paper.

Because inner nodes can only belong to one sub-structure, the usual FEM procedure for assembling the

global dynamic stiffness matrix shows that, if all the components of xi are ordered such that the degrees of

freedom of the inner nodes of the first sub-structure precede those of the second sub-structure which in turn

precede those of the third sub-structure, etc., then the matrix ðKii � �kMiiÞ must be quasi-diagonal, i.e. it has
the form
ðKii � �kMiiÞ ¼

ðK1 � �kM1Þ
ðK2 � �kM2Þ

. .
.

ðKl�1 � �kMl�1Þ
ðKl � �kMlÞ

2
666664

3
777775 ð13Þ
where ðKk � �kMkÞ is the approximate FEM dynamic stiffness matrix for the kth sub-structure with its

boundary clamped, and l is equal to ns, the total number of sub-structures. As the reduction of any sub-
C1

C2C3

C4

Definition of sub-boundary and inner nodes of a structure. Solid circles and hollow circles indicate sub-boundary and inner

respectively.
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matrix in Eq. (13) to a diagonal matrix can be performed separately, the sign count of the matrix on the left-

hand side of Eq. (13) is the sum of the sign counts of the sub-matrices on the right-hand side, i.e.
sfKii � �kMiig ¼
Xns
k¼1

sfKk � �kMkg: ð14Þ
As the number of inner nodes in each sub-structure tends towards infinity, each of the matrices

ðKk � �kMkÞ (k ¼ 1; 2; . . . ; ns) tends to the exact dynamic stiffness matrix of the kth sub-structure with its

boundary clamped, and Eq. (8) tends to
KDð�kÞxc ¼ 0; ð15Þ
i.e. KDð�kÞ approaches KDð�kÞ, the exact dynamic stiffness matrix of the structure with respect to the visible
vector of variables, which is a transcendental function of �k. Therefore Eqs. (12) and (14) give
Jð�kÞ ¼
Xns
k¼1

Jkð�kÞ þ sfKDð�kÞg; ð16Þ
where Jð�kÞ is the number of eigenvalues of the structure that are exceeded by the trial value �k and Jkð�kÞ is
the number of eigenvalues of the kth sub-structure with its boundary clamped that are exceeded by �k.

As shown by Eq. (9), KDð�kÞ is no longer a linear function of �k, which is why finding the eigenfrequencies

and the modes of vibration via Eq. (15) is called a transcendental eigenproblem.

Eq. (16) is the foundation of the Wittrick–Williams algorithm (Wittrick and Williams, 1971). It can be

seen that its derivation is based on the congruent transformation of the dynamic stiffness matrix, instead of

on the Sturm sequence property which was the starting point for earlier proofs of the algorithm. It will now

be shown that the congruent transformation plays a very important role in the solution of the transcen-
dental eigenproblem.
3. Modes of displacements for reduction of the dynamic stiffness matrix

In order to obtain sfKDð�kÞg, a diagonal matrix D that is congruent to KDð�kÞ is desired. From Eq. (4), it is
seen that there is a unique upper triangular matrix P ¼ L�T that can reduce the dynamic stiffness matrix to

diagonal form, i.e. for which
PTKDð�kÞP ¼ D: ð17Þ
Each column of P can be physically interpreted as a possible mode of displacements of the structure, so that

the corresponding column of the matrix F ¼ KDð�kÞP comprises the forces causing these displacements.

Therefore the elements of D are called the energy norms of the modes of displacements. Now pre-multi-

plying Eq. (17) by P�T enables F to be re-written as
F ¼ P�TD ð18Þ
which shows clearly that F is a lower triangular matrix. Therefore, see Fig. 2(a), the first mode of dis-

placements p1 is obtained by applying a force f11 at the first degree of freedom so that p11 ¼ 1 (pij indicates
the ith component of pj, the jth column of P, and fij indicates the ith component of fj, the jth column of F)

and fixing the remaining degrees of freedom. In general, the jth mode of displacements pj is produced by

applying a force fjj at the jth degree of freedom (so that pjj ¼ 1), fixing the ðjþ 1Þth; ðjþ 2Þth; . . . ; nth
degrees of freedom, and applying no forces at the 1st, 2nd, . . ., ðj� 1Þth degrees of freedom, as illustrated

by Fig. 2(b)–(d).
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Fig. 2. Modes of displacements and forces for the congruent transformation of the dynamic stiffness matrix.
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Although the modes of displacements can be evaluated by the triangular decomposition of the dynamic

stiffness matrix as shown in Eq. (4), they can instead be obtained recursively by
p1 ¼ e1 ð19Þ
f1 ¼ k1 ð20Þ
pk ¼ ek �
Xk�1

i¼1

fik
fii

pi ð21Þ
fk ¼ kk �
Xk�1

i¼1

fik
fii

f i ð22Þ
where kk is the kth column of KDð�kÞ and ek is the kth column of the unit matrix of order n.
di, the ith diagonal element of D, can be interpreted as the necessary input energy to produce the mode of

displacements pi. As an immediate consequence of Eq. (17), this can be expressed in terms of the forces as
di ¼ fii: ð23Þ
Moreover, if the ith principal minor determinant of KDð�kÞ is Di, then
di ¼
Di

Di�1

: ð24Þ
This result can be obtained by writing Eq. (17) in the sub-matrix form
P11 P12

0 P22

" #T
K11

D K12
D

K21
D K22

D

" #
P11 P12

0 P22

" #
¼ D11 0

0 D22

" #
; ð25Þ
from which it is easily seen that
D11 ¼ P11TK11
DP

11: ð26Þ
Eq. (24) follows immediately from the fact that the determinant of P11 is unity.
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4. Curves of energy norms

According to Eq. (17), the energy norms can be written as
di ¼ pTi KDð�kÞpi ði ¼ 1; . . . ; nÞ: ð27Þ
If the order of the degrees of freedom does not change during the process of the evaluation of the energy

norms, each di is a definite function of the trial value �k. The derivative of the function with respect to �k can
be expressed as
ddi
d�k

¼ 2
dpTi
d�k

f i þ pTi
dKDð�kÞ

d�k
pi ði ¼ 1; . . . ; nÞ: ð28Þ
The following equalities
pii ¼ 1

pik ¼ 0 ðk > iÞ
fik ¼ 0 ðk < iÞ

9=
; ð29Þ
are true for any trial frequency, where pik is the kth component of the ith mode of displacements, so that
dpTi
d�k

f i ¼
Xi

k¼1

dpTik
d�k

fik ¼
dpii
d�k

fii ¼ 0: ð30Þ
In other words, the first term in the right-hand side of Eq. (28) makes no contribution to the derivative, i.e.
ddi
d�k

¼ pTi
dKDð�kÞ

d�k
pi ði ¼ 1; . . . ; nÞ: ð31Þ
If the structure is discretized by using finite elements, the dynamic stiffness matrix is a linear function of
�k. In this case, Eq. (31) can be simplified as
d�di
d�k

¼ pTi
dðK� �kMÞ

d�k
pi ¼ �pTi Mpi ði ¼ 1; . . . ;m;mþ 1; . . . ;mþ nÞ; ð32Þ
where m is the number of degrees of freedom corresponding to the inner nodes of the structure and the
ðmþ kÞth degree of freedom in the finite element model is associated with the kth degree of freedom in the

exact model. As the mass matrix M is positive definite, Eq. (32) shows that the derivative of each �di is
negative. When m tends to infinity, �dmþi tends to di. Therefore, the derivatives of the energy norms are

negative, i.e.
ddi
d�k

< 0 ði ¼ 1; . . . ; nÞ: ð33Þ
This result indicates that the energy norms are locally monotonically decreasing functions of the trial

frequency.

However, on the curve of di there may be some singular points at which the value of di is not continuous.
These singular points are associated with the trial values �ks where Di�1ð�ksÞ ¼ 0 but Dið�ksÞ 6¼ 0. As the first

step of the proof, a function J ðmÞð�kÞ, called the partial sign count associated with K
ðmÞ
D ð�kÞ, the mth principal

sub-matrix of KDð�kÞ, is defined by
J ðmÞð�kÞ ¼
Xns
k¼1

Jkð�kÞ þ sfKðmÞ
D ð�kÞg ðm ¼ 1; . . . ; nÞ: ð34Þ
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When the trial value �k is changed from �ks � e to �ks þ e, where e is a small enough positive real number,

the value of J ði�1Þð�kÞ increases by one. Meanwhile, Dið�ksÞ 6¼ 0 requires that the value of J ðiÞð�kÞ is invariant.
Therefore, from Eq. (24) it is seen that di must jump from )1 to +1 at �ks. Consequently, each curve of the

energy norms is generally separated into a number of branches by some singular points, and in each of these

branches the energy norm is a monotonically decreasing function of the trial frequency, as illustrated by

Fig. 3.
5. Criterion for eigenfrequencies in terms of energy norms

From a physical point of view, the sequence of displacement vectors that can reduce the dynamic

stiffness matrix into diagonal form is one that gradually approaches the modes of vibration, in the sense

that fewer and fewer non-zero forces are needed to support the corresponding displacements. For the last

mode of displacements pn, at most only one non-zero force, equal to the last energy norm dn, is necessary. It
is obvious that if a value of k is found such that
dnðkÞ ¼ 0; ð35Þ

then k is definitely an eigenvalue and pn is the corresponding mode of vibration.
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In practice, most of the eigenvalues satisfy Eq. (35). However, it is theoretically possible that some

eigenvalues would be omitted if Eq. (35) were taken as the criterion. An obvious such case occurs when

the dynamic stiffness matrix is diagonal and each of its elements is a linear function of k. In this case, k is

an eigenvalue if any of the diðkÞ (i ¼ 1; . . . ; n) is equal to zero. In general, Eq. (35) will not be satisfied for
any modes of vibration for which the last degree of freedom is nodal, i.e. its displacement is zero.

However such exceptional cases are not an insurmountable obstacle, since any degree of freedom can be

re-numbered to be the last one. The question of how to choose the appropriate degree of freedom to be the

last one is now addressed.

When the ith eigenvalue ki is being located, the bounds on ki can be categorized into local and proper

ones, as illustrated in Fig. 4. A pair of bounds �kli and
�kui are called local if ki is the unique eigenvalue that lies

within the interval ð�kli; �k
u
i Þ. If also there are no poles in this interval, so that �kli and

�kui lie on the same branch

of the curve of the last energy norm, then they are called proper bounds. Local and proper bounds can be
recognized by evaluating the corresponding sign counts. Hence if �kli and �kui are found to be such that
Jð�kliÞ ¼ i� 1 and Jð�kui Þ ¼ i; ð36Þ
they are definitely at least local bounds on ki. Then, if dnð�kliÞ is positive and dnð�kui Þ is negative, �k
l
i and

�kui are
proper bounds and the zero point on the curve of dnð�kÞ in the interval ð�kli; �k

u
i Þ must be the eigenvalue ki.

Unlike the local bounds, the proper bounds depend on the last energy norm. When �kli and �kui are a pair of

local bounds but are not proper bounds for dnð�kÞ, they will be a pair of proper bounds for the last energy

norm dðjÞ
n ð�kÞ, which denotes that the jth degree of freedom has been re-numbered as the last one, as long as

they satisfy
dðjÞ
n ð�kliÞ > 0 and dðjÞ

n ð�kui Þ < 0: ð37Þ
Consequently, if a pair of local bounds has been found, the last degree of freedom can be chosen from those

that satisfy Eq. (37), as illustrated in Fig. 5.

In the process of choosing the last degree of freedom, the values of dðjÞ
n ð�kÞ (j ¼ 1; . . . ; n) are needed.

These can be obtained by a minor additional calculation after computation of the energy norms dið�kÞ
(i ¼ 1; . . . ; n) corresponding to the original order of the freedoms, due to their simple relationship to the

inverse of the dynamic stiffness matrix, i.e.
Fig. 4. Definition of local and proper bounds.
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dðjÞ
n ¼ 1

ðK�1
D Þjj

ð38Þ
where ðK�1
D Þjj is the jth diagonal element of the inverse of the matrix KDð�kÞ. This relationship results from

the physical interpretation of the jth column of the inverse of the dynamic stiffness matrix as being the

mode of displacements generated by applying a unit force at the jth degree of freedom only, so that ðK�1
D Þjj

is the corresponding displacement at the jth degree of freedom. From this interpretation, it is easily seen

that the force needed to produce unit displacement at the jth degree of freedom is simply the right-hand side

of Eq. (38).

From Eq. (17), the inverse of the dynamic stiffness matrix can be expressed in terms of the modes of
displacements as
K�1
D ð�kÞ ¼ PD�1PT: ð39Þ
Then combining Eqs. (38) and (39) and remembering that P is upper triangular gives
dðjÞ
n ¼ 1Pn

k¼j

p2kj
dk

; ð40Þ
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where the jth component of the ith mode of displacement is denoted as pij. When the jth degree of freedom

is re-numbered as the last one, the corresponding last mode of displacements changes from pn to pðjÞn , which

can also be expressed in terms of the original modes of displacements as
pðjÞni ¼

Pn
k¼maxði;jÞ

pkipkj
dkPn

k¼j

p2kj
dk

ði ¼ 1; . . . ; nÞ; ð41Þ
where pðjÞni is the ith component of pðjÞn . This result comes from the normalization of the jth column of the

inverse of KDð�kÞ by making its jth component unity while keeping the ratios of it to the rest of the com-

ponents invariant.

It is seen from the expressions in Eqs. (40) and (41) that the computations to obtain dðjÞ
n ð�kÞ and pðjÞn are

quite simple and can be completed efficiently. Therefore, when combined with the appropriate choice of the

last energy norm, Eq. (35) is a suitable criterion for obtaining eigenfrequencies. Moreover, it is also a
synthetic criterion in the sense that both the eigenfrequencies and modes of vibration can be obtained

highly accurately if Eq. (35) is approximated to high accuracy.

Another question about the criterion, for which theory is necessary even though it rarely occurs in

practice, is what to do when a mode of vibration of interest happens to be such that the values of all of the

visible variables are zero, i.e. xc ¼ 0. (This possibility was recognized and dealt with in the first (Williams

and Wittrick, 1970) paper on the Wittrick–Williams algorithm.) It seems impossible to employ Eq. (35) as

the criterion because obviously it cannot be satisfied no matter which degree of freedom is re-numbered as

the last one. However, the difficulty can obviously be easily overcome by changing one or more of the
invisible variables xi into visible ones.

Without loss of generality, suppose that just one invisible variable u becomes a visible one. As the

invisible variable is always associated with an inner node of a sub-structure, the corresponding degree of

freedom is ordered prior to any of the visible variables. Therefore, the energy norm d0 and the mode of

displacement p0 corresponding to the selected invisible variable u can be obtained through the dynamic

stiffness matrix for the sub-structure. For example, if KDð�k; qÞ is the known dynamic stiffness matrix for a

beam of length q (including axial behaviour) and is expressed as
KDð�k; qÞ ¼
K

11

D ð�k; qÞ K
12

D ð�k; qÞ
K

21

D ð�k; qÞ K
22

D ð�k; qÞ

" #
; ð42Þ
and if u is chosen as the kth displacement (k ¼ 1; 2 or 3) at the point with co-ordinate n, see Fig. 6, then,

based on its physical interpretation, the corresponding energy norm d0 can be written as
d0 ¼ eTkK
22

D ð�k; nÞek þ eTkK
11

D ð�k; q� nÞek; ð43Þ
where ek is the kth column of the unit matrix of order 3. The mode of displacement p0 is the first column of

the unit matrix of order nþ 1.

When u is re-numbered as the last degree of freedom, it is seen from Eqs. (40) and (41) that the cor-
responding energy norm dð0Þ

n and the components of the mode of displacements can be written as
ξ

ρ

Fig. 6. Beam of length q, showing (with a hollow circle) an inner node associated with an invisible variable.
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dð0Þ
n ¼ d0

1þ
Pn

k¼1

d0
dk

p2k0

ð44Þ

pð0Þni ¼

Pn
k¼i

d0
dk

pkipk0

1þ
Pn

k¼1

d0
dk

p2k0

ði ¼ 1; . . . ; nÞ; pð0Þn0 ¼ 1; ð45Þ
where pk0 is defined as the value of u when the original visible variables are equal to the components of pk
respectively under the action of forces f i defined by Eq. (22). The value of u can be assigned by the exact

expressions of displacements in a sub-structure in terms of the displacements at its boundary points. For

example, the equations
uðxÞ ¼ cos
mx
l

�
� cot m sin

mx
l

�
uð0Þ þ cosecm sin

mx
l
uðlÞ; m ¼ l

ffiffiffiffiffiffiffiffi
lx2

EA

r
ð46Þ
express the axial displacement of a bar in terms of its boundary displacements uð0Þ and uðlÞ, which are

always visible variables and so are among the components of the mode of displacements of the structure.

When the axial displacement at x ¼ n is chosen as a new visible variable, the value of pk0 is obtained by

calculating uðnÞ with the boundary displacements extracted from pk. If the analytical expression is incon-

venient, the value of pk0 can be obtained by applying Eq. (7) where xc is the vector of the boundary dis-

placements and the single element of xi is the value of the new visible variable. The result may be analytical,

if the analytical dynamic stiffness matrix is employed, or approximate if approximate matrices are used.

It is important to note that proper bounds on a specific eigenvalue are always found during the process
of recognizing the suitable last degree of freedom.
6. Computational method for the eigensolution

Since dn is a monotonically decreasing function of �k in the interval ð�kli; �k
u
i Þ bounded by the proper bounds

on an eigenvalue ki, the map from �k to dn is one to one. Hence �k is a well-defined function of dn. By inverting
the right-hand side of Eq. (31), the derivative of this function with respect to dn is obtained as
d�k
ddn

¼ 1

pTn
dKDð�kÞ

d�k
pn

: ð47Þ
The derivative defined by Eq. (47) is denoted as f ð�kÞ in order to simplify the notation. When a trial value �k0
is chosen within the interval ð�kli; �k

u
i Þ, the point with co-ordinates ð�k0; dnð�k0ÞÞ must lie on the branch of the

curve that has its unique zero point located where �k ¼ ki and dnð�kÞ ¼ 0. Therefore, the eigenproblem can be

transformed to the initial value problem constituted by the ordinary differential equations (47) and the

initial point ð�k0; dnð�k0ÞÞ, in which the eigenvalue ki can be found by locating the point ðki; 0Þ on the curve.
This transformation is very important, because it enables a variety of highly developed methods of

numerical analysis for ordinary differential equations to be applied to obtain the eigensolutions. For

example, if the one-step Euler method is employed, the approximated eigenvalue is given by
k ¼ �k0 þ hf ð�k0Þ ¼ �k0 �
pTnKDð�k0Þpn

pTn
dKDð�k0Þ

d�k
pn

; ð48Þ
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where
dKDð�k0Þ
d�k

¼ dKDð�kÞ
d�k

�����
�k¼�k0

ð49Þ
and
h ¼ �dnð�k0Þ ð50Þ
is the time step for integration. When a linear dynamic stiffness matrix, e.g. KDð�kÞ ¼ K� �kM, is used, the

differential of KDð�kÞ is reduced to
dKDð�k0Þ
d�k

¼ �M ð51Þ
and Eq. (48) gives
k ¼ pTnKpn
pTnMpn

; ð52Þ
which, interestingly, is simply Rayleigh�s quotient. Since Rayleigh�s quotients, which remain a powerful tool

when obtaining eigenvalues in structural dynamics, can be regarded as the simplest method of integration

for solving initial value problems, it is reasonable to expect that better results can be obtained by using

more accurate methods of integration, as follows.

The one-step fourth order Runge–Kutta method is preferred in this paper, because of its high accuracy

and simplicity. It estimates the eigenvalue in the following way:
k ¼ �k0 þ ½1
6
f ð�k0Þ þ 1

3
f ð�k1Þ þ 1

3
f ð�k2Þ þ 1

6
f ð�k3Þ�h; ð53Þ
where
�k1 ¼ �k0 þ 1
2
f ð�k0Þh; ð54Þ

�k2 ¼ �k0 þ 1
2
f ð�k1Þh; ð55Þ

�k3 ¼ �k0 þ f ð�k2Þh: ð56Þ

Once an approximated eigenvalue k is known, the absolute value of dnðkÞ is checked to see whether or not it

is larger than a given tolerance. When it is not, Eq. (53) is repeated with �k0 ¼ k and h ¼ �dnðkÞ. Moreover,
the bounds on the required eigenvalues ki are continuously improved during the evaluation of the deriv-

atives f ð�kkÞ (k ¼ 0; 1; 2; 3) in Eq. (53) according to the following principle: when sfKDð�kÞg ¼ i, �k is a better

proper lower bound on kiþ1 if �k > �kliþ1, or a better proper upper bound on ki if �k < �kui .
If the derivatives in Eq. (53) are not from the same branch, the estimated eigenvalue may be worse than

the initial value �k0. However, it is observed in practice that such an unfavourable situation rarely occurs

when the initial value �k0 lies between the proper bounds. Nevertheless, there is no strict proof to show that

such a situation can never occur and so the following stabilization control is highly recommended. When

the ith eigenfrequency is being sought, all of the f ð�kkÞ (k ¼ 0; 1; 2; 3) are obviously from the same curve if all
the trial values �k0, �k1, �k2 and �k3 lie between the proper bounds �kli and �kui . This condition amounts to the

following requirements:
Either ½sfKDð�kkÞg ¼ i� 1 and dnð�kkÞ > 0�
or ½sfKDð�kkÞg ¼ i and dnð�kkÞ < 0�

�
ðk ¼ 0; 1; 2; 3Þ: ð57Þ
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Fig. 7. Procedure for finding eigenvalue ki and its mode of vibration vi.
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If these requirements are not met, the long established bisection method is used to obtain a new trial value
�k ¼
�kli þ �kui

2
ð58Þ
which becomes the initial value for the next iteration. Despite its low accuracy, Eq. (58) gives a better

estimate of the eigenvalue than does �k0. The process of finding a specific eigenvalue ki and its associated

mode of vibration vi is illustrated in Fig. 7.

It seems that the differential of the dynamic stiffness matrix should be assembled in order to calculate the

derivatives in Eq. (53). However, only the differential of KDð�kÞ for each member of the structure is required

because the denominator on the right-hand side of Eq. (47) can be obtained by adding its components from

each member of the structure, i.e.
pTn
dKD

d�k
pn ¼

Xnc
i¼1

�pTi
dK

i
D

d�k
�pi; ð59Þ
where �pi is the vector of displacements of the ith member resulting from the mode of displacements pn, K
i
D is

the dynamic stiffness matrix of the ith member and nc is the number of members.
The differential of the dynamic stiffness matrix for a Bernoulli–Euler beam with axial displacements can

be obtained from the equations
da
dk

¼ 1

2k
a

�
� l
EA

e2
�
;

de
dk

¼ 1

2k
e

�
� l
EA

ae
�
; ð60Þ

db
dk

¼ 1

4k
3b

�
� l
EI

h2
�
;

df
dk

¼ 1

4k
3f

�
þ l
EI

dh
�
; ð61Þ
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dc
dk

¼ 1

4k
c

�
þ 2dl� l

EI
c2
�
;

dg
dk

¼ 1

4k
g

�
þ hl� l

EI
cg
�
; ð62Þ

dd
dk

¼ 1

4k
2d

�
� l
EI

gh
�
;

dh
dk

¼ 1

4k
2h

�
� l
EI

gd
�
; ð63Þ
where k ¼ x2 and a, b, c, d, e, f , g and h are the independent values in the dynamic stiffness matrix for a

Bernoulli–Euler member with uncoupled axial behaviour, i.e.
KDðkÞ ¼

a 0 0 e 0 0

0 b d 0 f h
0 d c 0 �h g
e 0 0 a 0 0

0 f �h 0 b �d
0 h g 0 �d c

2
6666664

3
7777775
; ð64Þ
where (Kolousek, 1973; Howson, 1979):
a ¼ EAm
l

cot m; e ¼ �EAm
l

cosecm; ð65Þ

b ¼ EIg3

Zl3
ðsin g cosh gþ cos g sinh gÞ; f ¼ �EIg3

Zl3
ðsin gþ sinh gÞ; ð66Þ

c ¼ EIg
Zl

ðsin g cosh g� cos g sinh gÞ; g ¼ EIg
Zl

ðsinh g� sin gÞ; ð67Þ

d ¼ EIg2

Zl2
ðsin g sinh gÞ; h ¼ EIg2

Zl2
ðcosh g� cos gÞ; ð68Þ

m ¼ l

ffiffiffiffiffiffiffiffi
lx2

EA

r
; g ¼ l

ffiffiffiffiffiffiffiffi
lx2

EI

4

r
; Z ¼ 1� cos g cosh g ð69Þ
and l, l, EA and EI are, respectively, the length, mass per unit length, extensional rigidity and flexural

rigidity of the member.
7. Numerical example

In order to make a comparison between the bisection method and the method proposed in this paper, a

problem used by Howson (1979) was solved. This problem was to find those eigenfrequencies
ffiffiffiffi
ki

p
and

modes of vibration of the frame shown in Fig. 8 that are listed in Tables 1–3. All the beams are made of the

same material and have identical cross-sections, with flexural rigidity EI¼ 5 MNm2, extensional rigidity

EA¼ 900 MN and mass per unit length l ¼ 35 kgm�1. The frame is fully built-in at node 1 and horizontal

movement is prevented at node 2.

In Howson (1979), the tolerance for the relative difference between the upper and lower bounds on the

eigenfrequencies was 10�6. In the present paper, this value of tolerance is instead used as an absolute

tolerance on the last energy norm dn. The results are shown in Table 1, where e1 is the largest absolute value
of any of the forces associated with the corresponding mode of vibration. The smaller e1 is, the more
accurate the corresponding mode of vibration should be.
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Fig. 8. A frame composed of beams.

Table 1

Comparison between the proposed method and the bisection method, showing eigenfrequencies
ffiffiffiffi
ki

p
(in Hz), the last energy norm dn

and measure of mode accuracy e1

i Proposed method Bisection methodffiffiffiffi
ki

p
dn e1

ffiffiffiffi
ki

p
e1

1 25.4676198 4.67922169 · 10�8 8.96980055· 10�8 25.4676200 0.05709290

2 39.4660333 4.20521418 · 10�8 4.20259312· 10�8 39.4660334 0.19144716

3 49.1171943 5.67928732 · 10�7 2.68220901· 10�7 49.1171943 0.02453265

20 256.203861 )8.98726285 · 10�7 8.94069672· 10�7 256.203861 3.28365721

Table 2

Comparison of speed of convergence

Eigenfrequency number Number of iterations by proposed method Number of iterations by bisection method

1 8 25

2 12 25

3 8 24

20 4 26

Table 3

History of the last energy norm dn and measure of mode accuracy e1 versus iteration number of the integration

Eigenfrequency number Iteration number dn e1

1 1 1.10085758 · 10�1 1.10085785· 10�1

2 4.67922169 · 10�8 8.96980055· 10�8

2 1 )5.25669286 · 105 5.25669286· 10�2

2 )6.31791522 · 10�2 6.31791531· 10�2

3 4.20521418 · 10�8 4.20259312· 10�8

3 1 1.74112694 · 102 7.78778037· 101
2 5.67928732 · 10�7 2.68220901· 10�7

20 1 )8.98726285 · 10�7 8.94069672· 10�7
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It is seen from the results that the slight differences between the eigenfrequencies obtained are within the
specified absolute tolerance of 10�6, but that the accuracy of the modes of vibration is improved greatly by

the method of the present paper. Moreover, the eigenfrequencies obtained by the present method are more
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accurate than those obtained by the bisection method. This conclusion was reached by repeating the

bisection results with a smaller tolerance.

In order to compare the speed of convergence, Table 2 shows the number of iterations needed to make

the last energy norm smaller than the given tolerance for the present method, and to make the separation of
the bounds on the eigenfrequency smaller than the same tolerance for the bisection method. This number

shows how many times it is necessary to reduce the dynamic stiffness matrix to diagonal form before the

given accuracy is obtained, noting that to make the comparison meaningful the iteration counts began only

after the same proper bounds had been found for each method. The results shown in Table 2 indicate that

the proposed method is much more efficient than bisection. Because each iteration of Runge–Kutta

integration requires four such reductions of the dynamic stiffness matrix, Table 2 indicates that most ei-

genfrequencies and modes of vibration of structures are likely to be found within three iterations of Runge–

Kutta integration. Finally, the values of dn and e1 for each iteration of the integration are shown in Table 3,
illustrating rapid convergence of both the eigenfrequencies and the modes of vibration. Therefore, the

method proposed in this paper is very efficient.
8. Conclusions

The method presented in this paper is an efficient and highly accurate method for computing the ei-

gensolutions of transcendental eigenproblems arising in structural dynamics. It is based on a new criterion

for eigenfrequency. Instead of trying to find the roots of the determinant of the dynamic stiffness matrix, the

method seeks the frequency that makes the last energy norm vanish, which is usually a physical definition of
the eigenfrequency. Rules have been presented for interchanging degrees of freedom to obtain an alter-

native last energy norm for the exceptional problems for which the original last energy norm corresponds to

a displacement which is nodal in the mode. By the property of energy norms, the eigenproblem is trans-

formed into a specific initial value problem of an ordinary differential equation. Among many available

methods to solve the resulting ordinary differential equation, the one-step Runge–Kutta method is proved

to be a simple and efficient method to obtain eigensolutions, as confirmed by the numerical example.
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